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Abstract

We present a new and straightforward algorithm that simulates exact sample paths for a
generalized stress-release process. The computation of the exact law of the joint inter-
arrival times is detailed and used to derive this algorithm. Furthermore, the martingale
generator of the process is derived, and induces theoretical moments which generalize
some results of [3] and are used to demonstrate the validity of our simulation algorithm.
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1. Introduction

Stress-release processes are a class of point processes, the first of which were self-correcting
processes [7]. Intuitively, a process is self-correcting if the occurrence of past points inhibits the
occurrence of future points. The stress-release processes are a generalization of self-correcting
processes and were introduced in a series of papers by Vere-Jones and others [24, 25] as well
as extensions to coupled stress-release processes [11, 12, 18] and further developments [1, 2].

In this study we work with a generalization of the stress-release process which includes an
exogenous point process term whose values upon arrival are modeled by a positive real-valued
random variable. We call our model the extrinsic stress-release processes.

We present a new formula for the law of the joint inter-arrival times for extrinsic stress-
release processes. As a natural consequence, an exact simulation algorithm is then proposed
which gives an alternative method to generating sample paths relative to standard methods
[9]. Our exact simulation algorithm naturally extends the results of [22] as a special case. The
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106 Y. LEE ET AL.

extension of our model is motivated by the influence of exogenous geophysical data on earth-
quake occurrence (see e.g. [15] and [26]). Point process models of this kind are typically used
to describe the evolution of stochastic phenomena in earthquake modeling, and it is important
to be able to simulate them for reliable predictions of damage due to a range of earthquake sce-
narios. Thinning algorithms [14] have been successfully employed to simulate a wide range of
point processes, such as inhomogeneous point processes (see [5, pages 270–271] and [23]), or
Hawkes processes [19]. Indeed, the same idea can be applied to the generalized stress-release
process proposed here. In this paper, simulation of the extrinsic stress-release process by our
exact algorithm will be compared with the standard thinning algorithm.

Finally, we present the infinitesimal generator for extrinsic stress-release processes. This
generator is intimately linked to the martingale problem, which is used to characterize the
weak solutions of partial integro-differential equations [10], and it allows us to derive the
theoretical reciprocal moments of the intensity function. In Section 6 these reciprocal moments
are used to demonstrate the correctness of our simulation algorithms. Basic notions and results
in stochastic calculus are taken as prerequisites throughout the present text (see e.g. [17]).

2. Extrinsic stress-release model

At the base of everything is some filtered probability space (�,F , F, P). We assume that
F0 is trivial, and the filtration F := (Ft)t≥0 fulfills the usual conditions and is generated by a
point process N( · ) on R+ where 0< T1 < T2 < · · · denote the occurrence times of the events.
Let Nt = �{Ti : 0< Ti ≤ t} be the number of the occurrence points in the time interval (0, t] with
N0 = 0. Furthermore, we let N′

t = �{T ′
j : 0< T ′

j ≤ t} be a Poisson process on R+, with arrival
times 0< T ′

1 < T ′
2 < · · · endowed with intensity ρ, which is independent of Nt, with N′

0 = 0.

Definition 2.1. The proposed extrinsic stress-release process N( · ) is a point process on R+
with conditional intensity function given by

λt := λ(t |Ft) = λ0 exp (βt − St − S′
t), t ≥ 0, (2.1)

where St = ∑
i : Ti<t Xi and S′

t = ∑
j : T ′

j<t Yj are the compound point process and compound

Poisson process, respectively. The Xi and Yj are i.i.d. positive random variables, with dis-
tribution functions FX and FY respectively, and the stress accumulation rate is the constant
β > 0.

Between jumps, λt increases exponentially with a positive rate of β > 0. Jumps are down-
ward multiplicative factors of size e−Xi < 1 for a self-arrival at time Ti, or of size e−Yj < 1
for an external arrival at time T ′

j . When a self-arrival occurs at time Ti, Nt increases by one,
hence (Nt, λt) is a Markov process. Instead of separating the self-arrivals of Nt and the external
arrivals of N′

t , it is sometimes convenient to consider all the arrivals indiscriminately. As such,
we label the kth arrival as T◦

k , and it can correspond either to some self-arrival Ti or some exter-
nal arrival T ′

j . See Figure 1 for an example realization of the extrinsic stress-release process,
with the effects of the self-arrivals and external arrivals on the conditional intensity function λt

highlighted.

Remark 2.1. Our proposed extrinsic stress-release process differs slightly from the coupled
stress-release model of [11]. Their equivalent of Xi and Yj from Definition 2.1 are not
unobserved random variables: they are deterministic functions of the observed earthquake
magnitudes. In our proposed model, we allow for these quantities to take any i.i.d. random
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Exact simulation of extrinsic stress-release processes 107

FIGURE 1. An example realization of an extrinsic stress-release process, with λ0 = 1, β = 1.5, ρ = 2, and
Xi ∼ Exp(1) and Yj ∼ Exp(2). Note that N is càdlàg while λ is càglàd.

variables that are positive and unobserved, so our formulation generalizes theirs. Unlike ours,
they allow for model parameters c and c′ in the exponent of equation (2.1) of the form

−cSt − c′S′
t,

where c and c′ can take either negative or positive values, thereby allowing for both damping
and excitation. We only consider the inhibitory regime, i.e. c = c′ = 1, so in this case their
formulation for general c and c′ subsumes ours. In either formulation, little or no work has
appeared on exact simulation strategies for the coupled stress-release model. We also add some
new aspects to the computation of explicit generators, facilitating moment computations. For
other theoretical and stationary moment calculations without the exogenous term S′, see [3],
[16], [20], and [21].

3. The law of joint inter-arrival times

In this section we present the explicit law of the joint inter-arrival times for extrinsic stress-
release processes. This terminology, ‘joint inter-arrival time’, refers to the time between each
of T◦

k arrivals (defined in Section 2). Itô’s formula [8] splits λt into continuous and jump
components:

λt = λ0 +
∫ t

0
βλsds +

∑
i : Ti≤t

λTi

(
e−Xi − 1

) +
∑

j : T ′
j ≤t

λT ′
j

(
e−Yj − 1

)
.

Between consecutive jumps the λ process evolves according its continuous part. In particular,
conditioned on T◦

k and λT◦+
k

, we have

λt = λT◦+
k

exp (β(t − T◦
k )) for t ∈ (T◦

k , T◦
k+1). (3.1)
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108 Y. LEE ET AL.

The intensity of the T◦
k arrivals is the combination of the Ti and T ′

j arrival intensities λt + ρ. Let
the kth joint inter-arrival time be denoted by τk := T◦

k − T◦
k−1 with cumulative density function

Fτk . With (3.1), we can simplify the point process relation

Fτk+1 (t) = 1 − exp

(
−

∫ t

0+
(λT◦

k +s + ρ)ds

)
= 1 − exp

(
−
λT◦+

k

β
(eβt − 1)

)
e−ρt, (3.2)

which is the law of the joint inter-arrival times.

4. Simulation methods

The law of the joint inter-arrival times in (3.2) can be used to derive a simulation method
for extrinsic stress-release processes. To simulate we need to (i) generate T◦

k joint inter-arrival
times, and (ii) be able to attribute each arrival as being either a self-arrival from Nt or an
external arrival from N′

t . By the inverse probability integral transform, we have

τk+1
D= F−1

τk+1
(U), U ∼ U[0, 1],

where
D= denotes equality in distribution. The inverse F−1

τk+1
does have an analytic solution

(which is somewhat rare) in terms of the Lambert W-function, so we can generate joint inter-
arrival times by the inverse transform method. However, the Lambert W-function is relatively
slow in many software packages, and this calculation does not perform the second attribution
step. A faster alternative, which solves both problems at once, is to use the composition method.

4.1. Exact simulation of stress-release model

The composition method [6, Section VI.2.3] simulates τk+1 from two simpler independent
random variables τ (1)

k+1 and τ (2)
k+1 by taking

τk+1
D= τ

(1)
k+1 ∧ τ (2)

k+1,

where the notation τ (1)
k+1 ∧ τ (2)

k+1 is simply shorthand for min
{
τ

(1)
k+1, τ

(2)
k+1

}
. One way to satisfy

this relation is to choose

P

(
τ

(1)
k+1 > s

)
= exp

(
−λT◦+

k
β−1 (

eβs − 1
))

and P

(
τ

(2)
k+1 > s

)
= e−ρs,

so

τ
(1)
k+1

D= 1

β
log

(
1 − β

λT◦
k

log (U1)

)
, τ

(2)
k+1

D= − 1

ρ
log (U2), U1,U2 ∼ U[0, 1]. (4.1)

This is the key step in the composition algorithm, presented in full in Algorithm 1.1.

4.2. Simulation by thinning

Extrinsic stress-release processes can also be simulated via the thinning algorithm. The
basic idea in this method is to generate a point process that has more arrivals than the model
dictates, then probabilistically remove the excess points. The result can be computationally
inefficient, and we compare the runtime of the thinning and composition simulation methods
in Section 6.
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Exact simulation of extrinsic stress-release processes 109

Algorithm 1.1: Generate an extrinsic stress-release process by composition.

The first step in the thinning algorithm is to generate the N′
t and S′

t processes. The self-
arrivals are then generated conditional on these external arrivals. Each self-arrival is generated
sequentially and requires a local upper bound on the intensity process. If we know S′

t for all
t ∈R+, we obviously have

λt ≤ λ0 exp (βt − S′
t), t ∈R+,

though as t increases this becomes an extremely loose bound. However, if we also know the
process St up until time τ , then

λt|τ := λ0 exp (βt − St∧τ − S′
t), t ∈R+, (4.2)

is a much tighter upper bound on the intensity, at least for t ∈ (τ, τ +�) for moderately small
�. Figure 2 shows some example realizations of (4.2).

With this definition, we can describe the thinning algorithm for the generalized stress-
release process in Algorithm 1.2. In particular, line 5 of the algorithm uses (4.2) to find an
upper bound of λt over a small region t ∈ (τ, τ +�]; these maximum values are not too tedious
to find, as they occur either at the end time τ +� or at one of the external arrival times T ′

j that
arrives inside the region.
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110 Y. LEE ET AL.

FIGURE 2. Example λt|τ upper bounds on the intensity function λt. This is the same realization of the
generalized stress-release process from Figure 1.

Algorithm 1.2: Generate an extrinsic stress-release process by thinning.

5. The generator

In this section we derive the explicit form of the infinitesimal generator for our process.
With this we are able to find reciprocal moments, which are then used to confirm the validity
of our simulation algorithm.
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Exact simulation of extrinsic stress-release processes 111

5.1. Constructing the infinitesimal generator

Let us introduce the integro-differential operator Lsr of our extrinsic stress-release process
(λt,Nt, t), which acts on a function f (λ, n, t) within its domain �(Lsr) as follows:

Lsrf := ∂f

∂t
+ βλ

∂f

∂t
+ λ

∫
R

[f (λe−x, n + 1, t) − f (λ, n, t)] FX(dx)

+ ρ

∫
R

[f (λe−y, n, t) − f (λ, n, t)] FY (dy). (5.1)

From Propositions II.1.16 & II.1.15 in [8], the conditional intensity function in equation (2.1)
can be recast as

λt = λ0 exp

(
βt −

∫ t

0

∫
R

xμ(dx, ds) −
∫ t

0

∫
R

yμ′(dy, ds)

)
,

where μ and μ′ are the jump measures associated with S and S′, respectively. Their associated
predictable compensators are ν(dx, dt) = FX(dx)λtdt and ν′(dy, dt) = FY (dy)ρdt. We now state
the following result.

Proposition 5.1. Let the integro-differential operator for our stress-release process be defined
as in equation (5.1). Then, for each t ∈R+, we obtain

E[f (λt,Nt, t)] = f (0,N0, λ0) +E

[∫ t

0
Lsrf (λs,Ns, s)ds

]

if the following f-integrability conditions hold:

E

[∫ t

0
λsds

∫
R

[f (λs+,Ns, s) − f (λs,Ns− , s)]2 FX(dx)

]
<∞ (5.2)

and

E

[∫ t

0
ρds

∫
R

[f (λs+,Ns, s) − f (λs,Ns− , s)]2 FY (dy)

]
<∞. (5.3)

Moreover, f satisfies the following partial integro-differential equation:

∂f

∂t
+ βλ

∂f

∂λ
+ λ

∫
R

[f (λe−x, n + 1, t) − f (λ, n, t)]FX(dx)

+ ρ

∫
R

[f (λe−y, n, t) − f (λ, n, t)]FY (dy) = 0. (5.4)

Proof. First note that λt can be recast as

λt = λ0 +
∫ t

0
βλsds +

∫ t

0

∫
R

λs(e
−x − 1)μ(dx, ds) +

∫ t

0

∫
R

λs(e
−y − 1)μ′(dy, ds).

Invoking Itô’s formula (see [13, Chapter VI]) on the arbitrary function f (λt,Nt, t) yields

f (λt,Nt, t) = f (λ0,N0, 0) +
∫ t

0

∂f

∂s
ds +

∫ t

0

∂f

∂λ
dλc

s +
∑

0<s≤t

[f (λs+,Ns, s) − f (λs,Ns− , s)],
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112 Y. LEE ET AL.

where λc denotes the continuous part of the semimartingale. We can write

∑
0<s≤t

[f (λs+,Ns, s) − f (λs,Ns− , s)]

=
∑

0<s≤t

[f (λs+,Ns, s) − f (λs,Ns− , s)] ·�Ns

+
∑

0<s≤t

[f (λs+,Ns, s) − f (λs,Ns− , s)] ·�N′
s

= Qt(f ) +
∫ t

0

∫
R

[f (λs+,Ns, s) − f (λs,Ns− , s)] ν(dx, ds)

+ Q′
t(f ) +

∫ t

0

∫
R

[f (λs+ ,Ns, s) − f (λs,Ns− , s)] ν′(dx, ds)

with Q·(f ) and Q′·(f ) being processes defined by

Q·(f ) :=
∫ ·

0

∫
R

[f (λs+,Ns, s) − f (λs,Ns− , s)](μ− ν)(dx, ds)

and

Q′·(f ) :=
∫ ·

0

∫
R

[f (λs+,Ns, s) − f (λs,Ns− , s)](μ′ − ν′)(dx, ds),

respectively. The integrability conditions in equations (5.2) and (5.3) guarantee that Q(f ) and
Q′(f ) are square-integrable martingales [4, Theorem VIII of Chapter II]. Hence we conclude
that the process (f (λt,Nt, t))t∈R+ is a special semimartingale [17] which can be decomposed
into a martingale and a predictable finite variation process

f (λt,Nt, t) − f (λ0,N0, 0) = Qt(f ) + Q′
t(f ) +

∫ t

0
Lsrf (λs,Ns, s) ds. (5.5)

Since Q(f ) and Q’(f ) are square-integrable martingales, the process defined by

(
f (λt,Nt, t) − f (λ0,N0, 0) −

∫ t

0
Lsrf (λs,Ns, s) ds

)
t∈R+

is also a square-integrable martingale. Taking the expected value of both sides of equation (5.5)
yields the result. For the subsequent expression, first define T > t and gt := E[h(λT ,NT , T) |
t, λt = λ,Nt = n] for some function h such that g satisfies the g-integrability conditions (5.2)
and (5.3). Then, by construction, gt is a martingale. By similar arguments, we see that
g − Q(g) − Q′(g) is a square-integrable martingale, but g − Q(g) − Q′(g) = ∫ ·

0 Lsrgds is also
a continuous process with finite variation. It must therefore be a continuous martingale with
finite variation [8, Corollary I-3.16]; hence we must have Lsrg = 0 P-almost surely, which
yields the partial integro-differential equation in (5.4). �
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Exact simulation of extrinsic stress-release processes 113

5.2. Reciprocal moments

Consistent with the observation in [21], we are unable to find moments of λt but we can find
moments of its reciprocal. Throughout Sections 5.2 and 5.3 we assume that λ0 = 1, though the
same arguments can be made in the general λ0 case.

Lemma 5.1. Let mS
1 := ∫

(ex − 1) FX(dx) and mE
1 := ∫

(ey − 1) FY (dy). We assume that β >

ρmE
1 and λ0 = 1. Then the expectation of λ−1

t is given by

E[λ−1
t ] = e−ψ1t + mS

1

ψ1
(1 − e−ψ1t), (5.6)

where ψ1 := β − ρmE
1 .

Proof. From Proposition 5.1, we have for f ∈�(Lsr) that

f (λt,Nt, t) − f (λ0,N0, 0) −
∫

Lsrf (λs,Ns, s)ds

is an F-martingale. Setting f = λ−1 in the generator yields

Lsr(λ−1) = −βλ−1 + mS
1 + ρλ−1mE

1

and

E

[
λ−1

t − λ−1
0 −

∫ t

0
Lsr(λ−1

s )ds

]
= 0.

Differentiating θ1(t) := E[λ−1
t ] with respect to t yields the non-linear inhomogeneous ODE

θ ′
1 +ψ1θ1 = mS

1, θ1(0) = 1,

whose solution is given in equation (5.6). �
By a similar token, and setting f = λ−2, we state the following.

Lemma 5.2. Let

mS
2 :=

∫ (
e2x − 1

)
FX(dx), mE

2 :=
∫ (

e2x − 1
)

FY (dy).

We assume that β > ρmE
1 , 2β > ρmE

2 , and λ0 = 1. Then the expectation of λ−2
t is given by

E[λ−2
t ] = e−ψ2t + mS

2

{
e−ψ1t − e−ψ2t

ψ2 −ψ1
+ mS

1

ψ1

[(
1

ψ2
− e−ψ1t

ψ2 −ψ1

)
− e−ψ2t

(
1

ψ2
− 1

ψ2 −ψ1

)]}
,

(5.7)

where ψ2 := 2β − ρmE
2 .

We end this section by giving some recursive relationships related to the inverse moments
of our process. Let N be the set of natural numbers and let k ∈N, mS

k := ∫
(ekx − 1) FX(dx),

mE
k := ∫

(eky − 1) FY (dy), and ψk := kβ − ρmE
k . We further assume that kβ > ρmE

k . Then the
generator for the function f = λ−k is readily computed as follows:

Lsr(λ−k) = mS
kλ

k−1 −ψkλ
k.
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114 Y. LEE ET AL.

By the martingale property we have that

E

[
λ−k

t − λ−k
0 −

∫ t

0
Lsr(λ−k

s )ds

]
= 0. (5.8)

Define the quantity θk(t) := E[λ−k
t ], and differentiating equation (5.8) with respect to t, we

arrive at the recursive non-linear inhomogeneous ODE

θ ′
k(t) +ψkθk(t) = mS

kθk−1(t),

where θ0 ≡ 1, which can be solved in a recursive fashion to obtain further reciprocal moments.

5.3. Covariance process

We provide an expression for the mean of the product of two reciprocals of intensities for
our process. This can be used to compute the covariance process. For s< t, it holds true that

E

[
λ−1

t λ−1
s

]
=E

[
E

[
λ−1

t λ−1
s | λ−1

s

]]

= e−ψ1(t−s)
E

[
λ−2

s

]
+ mS

1

ψ1
(1 − e−ψ1(t−s))E

[
λ−1

s

]
. (5.9)

To see why this is true, note that the inner expectation can be computed as follows:

E

[
λ−1

t λ−1
s |λ−1

s

]
= λ−1

s E

[
λ−1

t |λ−1
s

]
= λ−2

s e−ψ1(t−s) + λ−1
s

mS
1

ψ1

(
1 − e−ψ1(t−s)

)
.

Therefore, for s< t, we have

Cov
(
λ−1

s , λ−1
t

)
=E

[
λ−1

t λ−1
s

]
−E

[
λ−1

t

]
E

[
λ−1

s

]

= e−ψ1(t−s)
E

[
λ−2

s

]
+ mS

1

ψ1

(
1 − e−ψ1(t−s)

)
E

[
λ−1

s

]
−E

[
λ−1

t

]
E

[
λ−1

s

]
,

where the remaining expectations are given by (5.6) and (5.7). Furthermore, when we set S′ = 0
in equation (2.1), we retrieve the covariance results in [3, Theorem 2, page 317] upon substitut-
ing the results of Lemmas 5.1 and 5.2 to get an expression for equation (5.9) and subsequently
subtracting the quantity E[λ−1

t ] ·E[λ−1
s ].

6. Numerical results

To confirm that the simulation algorithms of Section 4 agree with the reciprocal moments
derived in Section 5, we compare the first reciprocal moments given by the theory to Monte
Carlo estimates. The results are given in Figure 3. The theory and the simulated values agree
nicely. This example is also used to illustrate the speed benefits to the composition simulation
method over the thinning method. In particular, Table 1 shows how long the two algorithms
took to generate a fixed number of realizations of the extrinsic stress-release process. The
difference in performance can be explained by (i) the fact that the composition method is
easily vectorized while thinning is not, and (ii) the thinning algorithm is inherently inefficient
as it intentionally generates too many points and discards a possibly large fraction of them.
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FIGURE 3. First reciprocal moments E
[
λ−1

t

]
and second reciprocal moments E

[
λ−2

t

]
for t ∈ [0, 50] of

an extrinsic stress-release process with λ0 = 1, β = 0.25, ρ = 1.25, and Xi ∼ Exp(3) and Yj ∼ Exp(10).
The theoretical values, given by (5.6) and (5.7), are compared with crude Monte Carlo estimates using
the two simulation methods from Section 4. Both simulation methods were allocated the same amount
of computation time (55–60 seconds); as such, Algorithm 1.1 generated 375 000 sample paths of λt,
whereas Algorithm 1.2 generated 25 000. The shaded regions indicate the 95% confidence intervals of

the Monte Carlo estimates.

TABLE 1. Comparison of runtime (in seconds) to simulate a number of realizations of the extrinsic stress-
release process until time T = 100 using Algorithms 1.1 and 1.2. The fastest time of three attempts is
recorded. A grid search is performed to select the optimal step size �= 1.86 for Algorithm 1.2 (this
search is not included in the runtimes). The specification of the process (λ0, β, ρ, etc.) is the same as in

Figure 3.

Number of realizations
Algorithm 102 103 104 105

Composition 0.0205 0.0544 0.3600 3.2992
Thinning 0.3026 3.0329 30.761 310.32

7. Concluding remarks

In this article we have introduced a straightforward but computationally efficient way of
simulating exactly for a class of generalized stress-release process. The idea stems from the
observation that between contiguous jumps at points in time, the process satisfies the continu-
ous part of the semimartingale and is thus governed by an ordinary differential equation. This
permits us to derive an expression for the distribution between events. The end result is that we
are able to sidestep the need to resort to thinning algorithms for the simulation of this class of
point processes.

The explicit form of the infinitesimal generator for the extrinsic stress-release process is
given. Theoretical reciprocal moments are derived which are then used to establish the validity
of our simulation algorithms.

We envisage that the approach outlined in this paper extends naturally to the general coupled
stress release models, i.e. the linked stress-release model [1, 2] with appropriate structures
satisfying the martingale generators. Ongoing work is investigating such a problem.
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